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ver the last 50 years the automotive industry has been going through huge
shifts in electrification (Figure 1). And, of course, we are seeing the electric
motor starting to replace the mechanical engine with the advent of Electric
& Hybrid Vehicles. Not surprisingly, the demand for ever higher density in a confined
electronics, leads to a greater and greater need to resolve the resultant thermal issues.

Thermal simulation technology for
automotive electronic equipment design

is shifting from steady state to transient
analysis. Here, | explain detailed Data
Network Resistance Capacitance (DNRC)
transient models, which are based on
Mentor’s T3Ster® tester data. In this article,
three innovations to methods for creating
DNRC models useful in electronics thermal
design are outlined:

1. Placement of measurement locations
in models so that the gap between
actual measurement and analysis can
be identified

2. Preliminary verification of component
Tj (junction temperature) value by CFD
thermal analysis

3. Creation of compact models from
manufacturer datasheets and Tj
calculations — what we call a DSRC,
Datasheet Resistance Capacitance
model.

If we consider a typical automotive engine
control unit (ECU) in Figure 2; it can be
noted that a typical engine underhood
compartment in a car hits relatively high
temperatures of approx. 105°C and since
electronic parts typically have an upper
practical operating limit of which threshold
must not be surpassed otherwise electronic
component quality cannot be guaranteed.
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Figure 1. Progression of car electronics product adoption and underlying trend over the last 50 years

ECU installation location temperature: 105°C (E/G room)
ECU power consumption: Approx. 40 W Printed circuit board

Glass transition point
Aluminum electrolytic 135°C or lower
capacitor

y Microcomputer
125°C ambient or lower P

125°C ambient
Transistor, FET, diode etc. or lower

Tj (junction temperature)

150°C or lower

Figure 2. Typical ECU and engine use case and thermal limits



Moreover, we are seeing that with the
advent of more vehicle electrification and
with autonomous vehicles on the horizon
(Figure 3), there is a need to thermally
simulate transient heating effects in ECUs
more and more, especially while the advent
of Advanced Driver-Assistance Systems
(ADAS) increases the number of high-
frequency ECUs. Hence, it is necessary
today to be able to estimate instantaneous
heat generation inside ECUs. Transient
thermal analysis needs by JEITA in 2013
were identified to be:

e Tjresponse during LED lighting
operation,

e |nstant transient analysis of Transistor,
FET, IC and other semiconductors; with
measurement of junction temperatures,

e Hot spots during SoC (System on Chip)
operation,

e Tjresponse from engine OFF (dead
soak), and

e Business need for the verification of
accuracy between measurements and
thermal analysis.

The target times for transient thermal
analyses depends on whether we are
dealing with a chip, a package or an
assembly (like an ECU) as illustrated by
Figure 4.

From the early days of the electronics
cooling simulation market there has been
some sort of approximation of chips

and packages in terms of their thermal
performance and the details inside the

chip. DELPHI compact thermal models
appeared in the 1990s and quickly became
the standard way of modeling packages

for CFD simulation that also allows for
manufacturers to protect their intellectual
property. However, the models do only
satisfy transient analysis in terms of the
accuracy, because the DELPHI compact
thermal models are solely represented by
thermal resistance values. Figure 5 depicts
Denso’s way of looking at all types of
analysis models that could be employed

to solve our thermal simulations. It is the
DNRC and DSRC models that we want to
investigate in this study because of their
inherent high accuracy and ability to be
distributed into the semiconductor supply
chain. Based on non-destructive electronics
thermal transient testing methodology,
DNRC is modeled by ‘structure functions,
featured by Mentor T3Ster tester (Reference
1). While the form of DSRC is the same as
that of DNRC, DSRC model is based on the
transient response values in IC component
datasheet.

Automotive -

Pedestrian detection by laser radar Transient heat analysis results

Temperature

High-speed
‘ operation in

| Hﬂﬂ LAY
AR
" Tront | detection m Ll

vehicle Signal processing
monitoring
Time
Figure 3. Escalation of transient heat issues with ADAS technology
Assembly
Chip Package (outside of Package)

-}
3
.
zg
3:3 Company S #
% g CompareT DENSO 4 @ Company S
E,g Company N
0.0001 0.001 0.01 0.1 1 10 100 1000
Time [s]

Figure 4. Target time for transient thermal analysis for Chips to Assemblies
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Figure 5. Development of package element models that meet ECU transient thermal analysis needs

This article is not going to go into the details
of the T3Ster RC approach for measuring
electronic element constituent performance,
and how it connects to CFD simulation
thermal analysis tools like FIoTHERM — see
Reference 2 for further details. However, an
outline thermal simulation & test workflow

is shown in Figure 6 that results in a useful
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network model and has the Tc node existing
for verification by measurement with a
thermocouple, the values of the model can
be compared with the actual temperature
measured at Tc for reconciliation. Crucially,
this modeling approach can be used by

Figure 7. Resuilts of element model accuracy verification Predictions versus Measurements
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in the table) is the DNRC approach. The calculation of element Tj depends on the thermal

resistance of the substrate

Necessary to accurately ascertain the substrate and
casing thermal resistance

Changes in thermal resistance due to thickness of

If we now apply this approach to the
measurement of transient thermal resistance
of a PCB, it is then desirable to measure
both the semiconductor component and
the PCB simultaneously. We did this with

an experiment involving two test circuits
with different thermal resistance and

substrate copper foil, thermal via and TiM

a thermal via
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capacitance values — one with a through
silicon via and one without (Figure 8). The
choice of the through Si via meant that the
thermal resistance of the PCB without it

is overwhelmingly higher than that of the
element as a whole — the element being
3K/W with the substrate at 10-20 K/W.
Hence, these simulations prove that an
environment model in which the element
model is located matters and is required
for accurate results. There needs to be
measurements with T3Ster of the transient
thermal resistance of the element in
mounted state on the PCB so as to produce
thermal resistances equivalent to those

in the actual product. This can be seen in
Figure 9 where T3Ster confirms the thermal
resistance at each point of the two circuits
with and without vias being considered in
the study. We even examined slight knicks
(cracks) in the two structures and saw that
structure functions of inside and outside
the semiconductor could be discerned
correctly.

If we use T3Ster measurement result to
calibrate a detailed thermal model for
FIoTHERM, we devised a seven step
workflow process (Figure 10) to accurately
obtain the physical property values of any
PCB. It involves using FlIoTHERM coupled
with powerful design space optimization
tools in order to search for the optimal
solution to curve fit onto the actual T3Ster
measurements. This in turn reveals accurate
physical property values in terms of the
thermal conductivity and specific heat of the
actual substrate layers. This data can then
be used as shown in Figure 11 to evaluate
the two circuits we described earlier. And
we were able to simulate 1,000 designs in
FIoTHERM and fit the results to the structure
functions under actual measurement.
However, the thermal conductivity in copper
foil shows 485W/mk, which is not a realistic
value, assuming the thermal conductivity
for pure copper is as low as 398w/mk.
Finally, we were able to do microscopic
cross-section measurements (Figure 12) of
the PCB substrate with different layers of
copper foil thicknesses as a cross-validation
of this T3Ster and FIoTHERM approach.

It revealed that the copper foil is 1.3 times
thicker than the design data. When it is
converted to the thermal conductivity, it
becomes 1.3 times. We got remarkably
good agreement and it shows our approach
is valid.

The biggest issue facing manufacturers and
assembly makers is in measuring actual Tj
values (Figure 13). Device manufacturers
usually guarantee their electronic
components to less than 150°C but how
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Figure 9. Temperature rise start time and thermal resistance of component for a circuit with and without a thermal via
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to measure Tj accurately and how to see
instantaneous changes in temperature as
the device operates? Usually the Tj can be
measured by a thermocouple and derived
from an electric power waveform analysis
and transient thermal graph in datasheet
(Figure 13).

If we look at our first proposed innovation,
that is, the temperature of the part for
coupling with thermal analysis is known.
Figure 14 shows this for Tc and Tj values
with the various model types outlined in
Figure 5. With detailed model and DNRC
model, the Tc node enables a comparison
with experimental results to ascertain the
error of the CFD thermal analysis.

Our second innovation, preliminary
verification of the Tj value by FloTHERM
thermal analysis is shown in Figure 15. It can
be seen that only a detailed DNRC model
with a Tc node derived from FIoTHERM and
T3Ster works well and internal package
information is simulated accurately such that
a transient Tj and Tc can be estimated in a
short period of time.

Qur third innovation is that it is now possible
to create models based on manufacturer’s
datasheets and calculate actual Tj values.
This is shown in Figure 16 where it can

be seen that a DNRC model captures the
actual transient thermal resistance in the
component’s mounted state thus leading to
an ultra-high precision model that conforms
to actual operating conditions. On the

other hand, a DSRC model is based on a
transient thermal resistance graph. Hence,
the value in the datasheet and the DSRC
model based on the datasheet are both
guaranteed by the manufacturer. Table 1
shows a relative comparison between the
recommended usage of DRNC and DSRC
models. As noted in the table, a DSRC
approach is a great bridge between analysis
models and component manufacturer’s
guaranteed property values in their
datasheet. Moreover, as the DSRC matches
the manufacturer’s datasheet value, it can
be guaranteed for product design. If the
data applicable in product design can be
converted into a model for analysis, both
component manufacturer and assembly
maker can easily exchange the models,
hence both welcome the approach. Another
benefit to this approach is relatively lower
costs compared with other measurement
techniques that have high measurement and
labor costs.

Finally, we carried out a validation test in a

standard transient thermal analysis JEDEC
still air chamber of a component on a PCB
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DNRC model | DSRC model
Design phase | Verification of
of model use prototype Conaept only
Evaluation
Actual product | environment
Product status assembly defined
b standards
Ventecires
thlermal Measurement datasheet
resistance
value

This is important
Table 1. Comparison of DNRC models and DSRC models
for thermal analysis

(see Figure 17) and compared it with the
T3Ster and FIoTHERM approach outlined
above. Error rates were very low and

good agreement in the DSRC models to
the manufacturer’s datasheet values were
observed. Hence, DSRC model creation
based on manufacturer’s datasheet is
possible and improved accuracy can be
achieved by these in-built substrate models.

Summary

We have shown that by using a coupling of
Mentor’s T3Ster transient thermal testing
hardware and FloTHERM thermal analysis
CFD software it is possible to measure
thermal resistance of PCBs accurately and
to create thermal simulation models of
semiconductor component by using DNRC
models for unsteady state analysis. The
DNRC modeling approach outlined here
allows for the calculation of Tj values with a
high level of accuracy in the CFD analysis
technology. Comparative verification with
measurements by Tc nodes are shown to
be possible such that the approach is useful
for verification experiments. Furthermore,
DSRC based on datasheet value can be
used for thermal design according to the
manufacturer’s datasheet values.
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Figure 17. Experimental Validation - Transient thermal analysis in JEDEC environment according to the measurement
environment of a component’s datasheet value
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