MATHEMATICAL
DESCRIPTION OF
THERMAL SYSTEMES
(distributed linear RC
systems)
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Introduction

* Linearity is assumed
— later we shall check if this assumption was correct

Thermal systems are

— infinite

— distributed systems

The theoretical model is: distributed linear RC system

Theory of linear systems and some circuit theory will be
used

For rigorous treatment of the topic see:

V.Székely: "On the representation of infinite-length distributed RC one-ports", IEEE
Trans. on Circuits and Systems, V.38, No.7, July 1991, pp. 711-719

Except subsequent 12 slides no more difficult maths will be used
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Introduction

* Theory of linear systems
U] 1 40

A1) - (1)

Dirac-delta weight function (Green s function)

* The /(7) unit-step function is more easy to realize than
the 5(1) Dirac-delta

h(t) ! a(t) a(t) — W(t)® h(t)

h(r) - ()

>/ > |

a(?) is the unit-step response function

If we know the a(¢) step-response function, we know
everything about the system

- the system is fully characterized.
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Step-response
a(t) =W (1) ® h(1) = jW(y) h(t—y) dy

a(1) = jW(y) (=) dy - jW(y) 1 dy
d O

——a() =W () N

« The a(?) unit-step response function is another
characteristic function of a linear system.

a(t)

> [

« The advantage of a(?) the unit-step response function
over W(t) weight function is that a(¢) can be measured
(or simulated) since it is the response to /i(7) which is
easy to realize.
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Step-response functions

* The form of the step-response function
— for a single RC stage:

C R
a(t):R-[l—eXp(—f/T)] W“ r=R-C t
$ R | : ]
characteristic values: R magnitude and rtime-constant
— for a chain of n RC stages: c. c, c. A
| | [ R, R, R,
| | I

a(t) = Zn: R, -[1 — exp( —z‘/ri)]

R, R

7. =R.-C.
characteristic values: set of R, magnitudes and z, time-constants

If we know the R; and 7;values, we know the
Th 1 t d modelling: ; :
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Step-response functions
— for a distributed RC system:.

n— oo Z = wj
i=1 0

a(t) = Zn: R. -[1 — exp( —z‘/z'l.)] ‘a(z‘) = O]R(z')[l — exp( —r/z')]dr

characteristic: R(7) time-constant spectrum:
1 R(7)

7 7, T,
discrete set of R, and z, values continuous R(7) spectrum

If we know the R(7) function, we know the
dlstrlbuted RC system
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Time-constant spectrum

Discrete RC stages discrete set of R; and 7, values
Distributed RC system continuous R(7) function

A

R(7)

a(t) = O]R(z')[l —exp(—t/7t){r

If we know the R(7) function, we know the system.
R(7) is called the time-constant spectrum.

Thermal measurements and modelling:
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Thermal transient testing

Power h( f) a(t) Temperature rise

Time

Package under test

The measured a(?) response function is characteristic to the
package. The features of the chip+package+environment structure
can be extracted from it.
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Excitation

o P, « A Py - h(1) dissipation step has to be
provided

* Any circuit structure that can be switched on
to dissipate, would do, provided that
constant dissipation is assured

 |If constant dissipation can not be assured
after switching on, we may use switching
off: O power is for sure.

| » The excitation function in this case is P, - h(-t),
rackage ncerest (7)) 1S called cooling curve
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Measuring the response

« Suitable sensing mechanism is needed to measure the

a(t) temperature response
— on-chip sensing
« TSP = temperature sensitive parameter

forward voltage of a diode,
threshold voltage of a MOST

see JEDEC JSD51-1

Electrical test method:

 dedicated temperature sensors on the chip

— off-chip sensing
« thermocouple
* IR camera

« Data acquisition
— logarithmic time (software)
— high sampling rate (hardware)
— high signal-to-noise ratio (hardware)

Thermal measurements and modelling:
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Practical problem

* The range of possible time-constant values in thermal
systems spans over 5..6 decades of time
— 100us ..10ms range: semiconductor chip / die attach
— 10ms ..50ms range: package structures beneath the chip
— 50ms ..1 s range: further structures of the package
— 1s ..10s range: package body
— 10s ..10000s range: cooling assemblies

» Wide time-constant range = data acquisition problem
during measurement/simulation: what is the optimal
sampling rate?

Thermal measurements and modelling:
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Practical problem (cont.)

T3Ster Master: Smoothed response
70

) a(t) Measured unit-step

/ response of an MCM
0 shown in linear time-
40 / scale

30

Temperature rise [°C]

400 600 800 1000 1200

Time [s]

Nothing can be seen below the 10s range

Solution: equidistant sampling on logarithmic time scale

Thermal measurements and modelling:
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Using logarithmic time scale

T3Ster Master: Smoothed response
70

a(z) f Measured unit-step

” response of an MCM
- 50 shown in linear time-
F . scale
/
= 20

s -
0 _H,/ z=1In(?)
Time [s]

Details in all time-constant ranges are seen
Instead of ¢ time we use z = In(¢) logarithmic time
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Step-response in log. time

« Switch to logarithmic time scale: a(¢) = a(z) where
z = In(?)

a(z) is called*

— heating curve or
— thermal impedance curve

« Using the z = In(¥) transformation it can be proven that
; -
——a(z)= [RO)exp(z=¢ —exp(z =)

*Sometimes P-a(z) is called heating curve in the literature.
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Step-response in log. time

* Note, that da(z)/dz is in a form of a convolution integral:
J -
——a(z)= [RO)lexp(z-¢ —exp(z =) H¢

Introducing the w_(z) = exp(z —exp( z))

function:

< a(2)= OjR(é)-wZ(z—:)dé

a a(z)=R(z)®w,(z)

dz

* Froma(z) R(z)is obtained as: R(z) ={

d a(z)} @' w_(z

—

dz

il Thermal measurements and modelling:
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Extracting the time-constant spectrum in
practice 1

T3Ster Master: Smoothed response

dz | derivation _
Numerical

T3Ster Master: Derivative _1
‘ f B W2} deconvolution

/f d | Numerical

a(z)

ature rise [°C]

Temp:
\

] s
l1e-€5 1e-4 0.01 1 100 10000 d \
. Time [s] —a(z) -
: ] ) |
Measured thermal ‘ /| |
impedance curve : . 1 |
Time [s] £ R(Z) I “
Derivative of the 2 ) ~ |
thermal impedance T e "™
curve

Time-constant spectrum
F Tiuremeres. IMICcReD 60
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Extracting the time-constant spectrum in
practice 2

a(z)
d

dz

®"' w(2)

R(z)

Must be noise free, must have high time resolution (e.g. 200
points/decade)

Danger of noise enhancement = filtering = loss of ultimate resolution in
the time-constant spectrum

False values with small magnitude can be present due to noise
enhancement in the procedure. Negative values represent a transfer
impedance.

Garbage in — garbage out!
In German:

Tu gut hinein — nimmst gut heraus.
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INTRODUCTION TO
STRUCTURE FUNCTIONS
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Example Thermal tranS|ent measurements

heating or cooling
pc curves
o I_ l
"IF Normalized to 1W
E dissipation: thermal
: =7 ... ... .. !'¥®] impedance curve
Evaluation: Interpretation of

| the impedance
Network model of a thermal impedance:

. model:
JUCI:I':J_:J_:J_:J_:'T':'_"‘T‘:'T:'] STRUCTURE
I < q FUNCTIONS

Thermal measurements and modelling:
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How do we obtain them?

Thermal measurements and modelling:
The transient and multichip issue
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Structure functions 1

* Discretization of R(z) = RC network model in Foster
canonic form

(instead of « spectrum lines, 100..200 RC stages)
b Riz)

R=R(z)  ATrre T

Il ...

,=exp(z;) I 47

-PHHPHPHPHT (Y,

C.=7/R.

A discrete RC network model is extracted = name of the
method: NID - network identification by deconvolution

Thermal measurements and modelling:
The transient and multichip issue
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Structure functions 2

* The Foster model network is just a theoretical one,
does not correspond to the physical structure of the
thermal system:

thermal capacitance exists towards the ambient (thermal
“‘ground”) only

 The model network has to be converted into the
Cauer canonic form:

AFHTHTHFHTHT - HTh

:

T 11 1L 1L I 7 J_:J_Z'l
1l 1 I 1 1 1 1 1

Thermal measurements and modelling:
The transient and multichip issue
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Structure functions 3

* The identified RC model network in the Cauer canonic form
now corresponds to the physical structure, but

T I I I I 1~ ~TTITI™
I I I I I 1T I I

 itis very hard to interpret its “meaning”

* |ts graphical A -

_ M= o L T L T':'T':'__I
representation I T T L&l T I T
helps: fe,=Yc, |

i=I
 This is called c{
cumulative structure
function //_// !
R. =Y R,
i=1
R

el [hermal measurements and modelling:
The transient and multichip issue
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Structure functions 4

The cumulative structure function is the map of
the heat-conduction path:

1 ttl

ambient

—
—
I_| 1
O
—
i

68



Structure functions 5
Differential structure function

« The differential structure function is defined as the derivative
of the cumulative thermal capacitance with respect to the
cumulative thermal resistance

dC,
dR,

K(Rz):

cAdx
K(R,)= ey cAA’

« K is proportional to the square of the cross sectional area of the
heat flow path.

Thermal measurements and modelling:
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Structure functions 6

100000
10000

100000

10000 ¢
1000 |

K [W2siK2]
=
—_

=
I

0.01

0.001
0

iy
— O

curmulative structure function

¢

2 i 4 5
Rth [KAN]

* differential structure function

10

Finned heat sink

l

Package

Interface resistance:

4 B
Fth kAN

The transient and multichip issue

Thermal measurements and modelling:

10

Cumulative (integral) structure
function

Calculate dC/dR:

—
differential structure function
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What do structure
functions tell us and how?




A hypothetic example 1

T(Z) A

An ideal homogeneous rod

N

I
—

=
v~

1D heat-flow

Y
Rth_tot= LI(A-2)

Ideal heat-sink at T,

Thermal measurements and modelling:
The transient and multichip issue
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A hypothetic example 2

An ideal homogeneous rod

VAVAVA

(

l R, = ALI(A 2)

1D heat-flow V=AAL —— c y
th = -Cv
v
AL A Tt Ideal heat-sink at T,,,

Thermal measurements and modelling:
The transient and multichip issue

“remenss INViCReD 73




A hypothetic example 3

An ideal homogeneous rod

L [l

Driving point
|
IIIIIIIIIIIIIIIIT
This is the network model of the Ambient
thermal impedance of the rod Ideal heat-sink at T, ,

Thermal measurements and modelling:
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A hypothetic example 4

Let us assume AL, A and material parameters such, T
that all element values in the model are 1!

1

1 1 1 1 1 1
{MMM— T —H{— {1

1 1 1 1 1 1 1 1 1
S K s e e e A e A e A A e A e e
I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1
A\ _J
Y
It is very easy to create  fc. Rin_to

the cumulative
structure function:

The location of the singularity gives the

y=x — a straight line
total thermal resistance of the structure.

There must be a E
singularity when we I
reach the ideal heat-sink. / Rin_tot Ry - ZR

Thermal measurements and modelling:
The transient and multichip issue
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A hypothetic example 5

Let us assume AL, A and material parameters such, T
that all element values in the model are 1!

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
O— = e — i — e T R T (e —
11 1 1L 1L 1L L1 1 L 1L L L1 1 L1 L1 L
I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1 I1
4 _dCZ
K(Ry)= dR,
It is also very easy to create the differential structure
function for this case. Again, we obtain a straight line:
y=1 :
VVVVV > Rin_tot 5 R, = leRi
Thermal measurements and modelling: By Andras P :
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A hypothetic example 6

What happens, if e.g. in a certain section of the
structure model all capacitance values are equal to 27

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1

 E e e e A e A e e e e A A |
A AR AN A AR RN IS (A L S L

4 - 4 dC.
CE = i = =
Z K(R) =2
a peak
2
double
slope 1
RZ = i Rz’ RZ = i ‘Ri
Cumulative structure function Differential structure function

Thermal measurements and modelling:
The transient and multichip issue
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A hypothetic example 7

What would such a change in the structure functions
iIndicate?

1e:= E,:C i K(Rz)zj—iﬁ
a peak
double H It means either a
slope change in the
A= TR Re= 3R material properties...
Cumulative structure function Differential structure function

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Thermal measurements and modelling:
The transient and multichip issue
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A hypothetic example 8

What would such a change in the structure functions

Indicate?
tc. - i:c I K(Ri)zi_i;
a peak
double H ... or a change in the
slope geometry ...or both
Ry =R, R, = i 3
Cumulative structure function Differential structure function

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Thermal measurements and modelling:
The transient and multichip issue
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A hypothetic example 9

What values can we read from the structure functions?

Cint Ciho Cins
A A A
'4 AY{ \Yd
\\ Y J\ Y JNL ~
A B dCy
(k)= dR, Rin1 Rinz Rins
R, =Y R
I =!
. , Differential structure function
Cumulative structure function
Thermal capacitance Ry =2k
values can be read ‘ ' , : Partial thermal resistance

values can be read
Rth1 Rth2 Rth3

Thermal measurements and modelling:
The transient and multichip issue
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A hypothetic example 10

What values can we read from the structure functions?

V, V, Vs
A A A
4 N\ \l
7
As g A
V3/ Cy1 2 1
4 dacC
K(Ry) = dRz
V2/ Cv2
Ky = A%Cpds
V./c,4 R, =) R
j=1
. , Differential structure function
Cumulative structure function K,=A2 ¢, A,
If material is known, Ry =2k

volume can be identified.

If volume is known, volumetric
thermal capacitance can be identified.

If material is known, cross-sectional
area can be identified.
If cross-sectional area is known, material
parameters (c 1) can be identified.

Thermal measurements and modelling:
The transient and multichip issue
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Some conclusions regarding structure
functions

o Structure functions are direct models of one-dimensional
heat-flow

— longitudinal flow (like in case of a rod)

 Also, structure functions are direct models of “essentially”
1D heat-flow, such as

— radial spreading in a disc (1D flow in polar coordinate system)
— spherical spreading

— conical spreading

— etc.

» Structure functions are "reverse engineering tools":
geometry/material parameters can be identified with them

| Thermal measurements and modelling:
The transient and multichip issue
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Some conclusions regarding structure
functions

In many cases a complex heat-flow path can be
partitioned into essentially 1D heat-flow path sections
connected in series:

J L

Thermal measurements and modelling:
The transient and multichip issue
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IC package assuming pure 1D heat-flow

A P(F) 7(2)

: 1w
Gr\ease JunTtlon Die attach L q [ Lzlnt‘

/ We measure the thermal
impedance at the junction...

...and create its model in form of the
Cold-plate cumulative structure function:

Cumulative structure function:
Cold-plate: infinite C,,

Grease: large R, /C,, ratio
Base: small R, /C,, ratio

Junction: is always in the origin - _
Die attach: large R, /C,, ratio

\ Chip: small R,/C,, ratio R
z

Thermal measurements and modelling:
The transient and multichip issue
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Example of using structure functions:
DA testing (cumulative structure functions)

Reference device with good DA Unknown device with suspected
DA voids
Grease JunTtlon [l)ie attach Grease JunTtlon [I)ie attach

Cold-plate
|[dentify its structure function: |dentify its structure function:
A CZ a CZ

Copy the reference
Grease structure function into

This change is more

Base this plot : visible in the
I reer ' differential structure
Die attach — “— function.
Chi This increase
p R, suggests DA voids R
> | >
T L= ek a1~ Thermal measurements and modelling: By Andras Poppe,
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Example of using structure functions:
DA testing (differential structure functions)

Reference device with good DA Unknown device with suspected
DA voids
Grease JunTtlon [l)ie attach Grease JunTtlon [I)ie attach

v

Cold-plate Cold-plate

Shift of peak: Increased die
attach thermal resistance

~ oC, 1 ~ oC, 1 indicates voids
OR, OR,
Copy the reference o
structure function into —
Chip this plot Chip
. Base .. iBasp
: . ‘ i - f
i i N
Junction\ Die attach Grease Rz Junction\ Die attach Grease Rz

Thermal measurements and modelling:
The transient and multichip issue
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Use of structure functions:

curmulative structure function

100000 ¢
1|:u:n:u:|_1;' R S =
1000 | « Plateaus correspond to a certain

— 100 |€ mass of material

S Lol ' y
= / . C,, values can be read | Cin values can be read

o € « material = volume

G | « dimensions = volumetric thermal
i e , F , _ capacitance

0 2 : 4 B = B 10
: =G :
ol iff ial fi [ .
100000 L «  Peaks correspond to change in
Finned heat sink .
10000 | l : material
1000 | : i« corresponding R;, values can be
R,, values cdn be read PONTING M,
T 00 Package : 1 read
§ 10} * material = cross-sectional area
v Interface resistance: »  cross-sectional area = thermal
0.1 B : conductivity
e -
0.07
HRNNY :
0 2 4 a a 10
Fth [k

Thermal measurements and modelling:
The transient and multichip issue
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Some conclusions regarding structure
functions

* In case of complex, 3D streaming the derived model
has to be considered as an equivalent physical
structure providing the same thermal impedance as
the original structure.
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SUMMARY of descriptive functions

Descriptive functions can be used in evaluation of both

measurement and simulation results:

Step-response can be both measured and simulated

— Small differences in the transient may remain hidden, that is why other
descriptive functions need to be used

Time-constant spectra are already good means of comparison

— Extracted from step-response by the NID method

— Can be directly calculated from the thermal impedance given in the
frequency-domain (see e.g. Székely et al, SEMI-THERM 2000)

Structure functions are good means to compare simulation

models and reality

Structure functions are also means of non-destructive structure
analysis and material property identification or R,, measurement.

Thermal measurements and modelling:
The transient and multichip issue
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Thermal transient testing

« Measuring the a(z) step-response function (log. time

scale)
 Extracting the other descriptive functions R(7), C(Ry) or

K(R y) using the NID method
* Analysis based on the descriptive functions

Power

R1 RZ
_ R
_ N Sy )
_ Pulse thermal resistance diagram
- Evaluation 7

Structure function

. NID method | s
. ;
Package under test

Rin

Temperatre;ise Package dynamic model

\

Thermal measurements and modelling:
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